Wear Behavior of an Unstable Knee: Stabilization via Implant Design?
نویسندگان
چکیده
BACKGROUND Wear-related failures and instabilities are frequent failure mechanisms of total knee replacements. High-conforming designs may provide additional stability for the joint. This study analyzes the effects of a ligamentous insufficiency on the stability and the wear behavior of a high-conforming knee design. METHODS Two simulator wear tests were performed on a high-conforming total knee replacement design. In the first, a ligamentous-stable knee replacement with a sacrificed anterior cruciate ligament was simulated. In the second, a ligamentous-unstable knee with additionally insufficient posterior cruciate ligament and medial collateral ligament was simulated. Wear was determined gravimetrically and wear particles were analyzed. Implant kinematics was recorded during simulation. RESULTS Significantly higher wear rates (P ≤ 0.001) were observed for the unstable knee (14.58 ± 0.56 mg/10(6) cycles) compared to the stable knee (7.97 ± 0.87 mg/10(6) cycles). A higher number of wear particles with only small differences in wear particle characteristics were observed. Under unstable knee conditions, kinematics increased significantly for translations and rotations (P ≤ 0.01). This increase was mainly attributed to higher tibial posterior translation and internal rotations. CONCLUSION Higher kinematics under unstable test conditions is a result of insufficient stabilization via implant design. Due to the higher kinematics, increased wear was observed in this study.
منابع مشابه
Investigation of Wear Behavior of Biopolymers for Total Knee Replacements Through Invitro Experimentation
The average life span of knee prosthesis used in Total Knee Replacement (TKR) is approximately 10 to 15 years. Literature indicates that the reasons for implant failures include wear, infection, instability, and stiffness. However, the majority of failures are due to wear and tear of the prosthesis. The most common biopolymer used in TKR is Ultra High Molecular Weight Polyethylene (UHMWPE). Pr...
متن کاملManufacturing conditioned roughness and wear of biomedical oxide ceramics for all-ceramic knee implants
BACKGROUND Ceramic materials are used in a growing proportion of hip joint prostheses due to their wear resistance and biocompatibility properties. However, ceramics have not been applied successfully in total knee joint endoprostheses to date. One reason for this is that with strict surface quality requirements, there are significant challenges with regard to machining. High-toughness bioceram...
متن کاملWear Behavior in Micro and Nano-Structured WC-9Co-0.7VC Cemented Carbide Produced by Rapid Hot Press Sintering
The effect of CaO on the formation of β- and γ-zirconia nanoparticles from α-zirconia was investigated and their stability evaluated via mechanical activation. α-ZrO2+8.5wt%CaO powder was milled for 2-150 hours with ball-to-powder weight ratios (BPWR) of 40:1 and 60:1. Structural evaluations were conducted using X-Ray diffraction and scanning electron microscope (SEM). Thermal analysis wa...
متن کاملBiomechanical Assessment of a Patient-Specific Knee Implant Design Using Finite Element Method
Rheumatoid arthritis is the leading cause of disability in young adults. Total knee arthroplasty has been successfully used to restore the joint function. Due to small bone size, osteoporosis, and severe soft tissue disease, standard knee implant sometimes cannot be directly applied clinically and patient-specific designs may be a more rational choice. The purpose of this study was to evaluate ...
متن کاملVERILASTTM Technology An advanced bearing system for TKA
Introduction Long-term success of total knee arthroplasty (TKA) is a multifactorial issue. Implant design and materials selection play an important role in the wear-related performance of TKA. It is widely recognized that excessive wear of UHMWPE tibial inserts can result in mechanical implant instability and, in some instances, catastrophic wear. However, the more harmful effect occurs with ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014